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Abstract: Spatial economics has become a prominent part 
of economic sciences over the past decades. One of its goals 
is to explain the flow and distribution of production factors 
in space. One possible way to do that is by employing 
theoretical economic models, such as the Solow model. 
This article aims to analyze the impact of including a labor 
diffusion term in the capital equation upon the steady state 
stability of the spatial Solow model, thereby bridging a 
gap in the literature. The results indicate that the diffusion 
coefficient has a profound effect on stability. Namely, high 
values of the coefficient can make the model unstable, but 
only if labor reacts to the density of capital.
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1 Introduction

There have been several 'revolutions' in economic theory as well as paradigm 
shifts. Some of the most heralded ones include the Marginal Revolution or 
the Keynesian Revolution, which paved the way for modern micro- and 
macroeconomics, respectively. However, there have been other major 
contributions which have shaped the way economics is done.

One such example is the introduction of the Solow growth model by Solow 
(1956). The Solow model provides a modeling framework in which economists 
could study long-term factors of economic growth. Furthermore, the model 
(together with its many extensions) renders it possible to study convergence of 
economies and enables economists partially to explain the observed differences 
in the product per capita/per worker between various economies (Acemoglu, 
2009). However, the early versions of the model neglected the spatial aspect 
of economic activities.

The spatial dimension of economic activities gained the attention of economists 
after Paul Krugman's seminal work on economic geography had been published 
(see Krugman, 1991). Soon after that, general equilibrium models started to 
emerge which tried to explain the mobility of factors of production as well as 
the formation of regional structures such as agglomerations (see, for instance, 
Masahisa, Krugman & Venables, 1999).

A certain line of research within new economic geography strives to explain 
the distribution as well as mobility (in the following sections, we refer 
to mobility as diffusion since this term is used in the spatial Solow model 
literature, stemming from the fact that the underlying equations in the model 
are of the diffusion type) of both production factors and goods among regions/
spatial units. Better understanding of the underlying forces of factor mobility 
and distribution can lead to better, tailor-made policies. There are several 
possible ways to study regional/spatial factor mobility. One such way is to 
use models with a finite number of regions. Another possibility is to assume 
that there is a continuum of regions/spatial units. This approach is taken in the 
spatial Solow model.

Camacho and Zou (2004) try to reconcile the original Solow model which 
does not take spatial effects into consideration with the economic geography 
approach by constructing a spatial version of the Solow model. However, the 
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simple version of the spatial Solow model disregards the interplay between 
capital and labor. This drawback is in part remedied by Juchem Neto and 
Claeyssen (2014). Nevertheless, their model still ignores the potential effects 
labor can have on the distribution of capital. Namely, they assume that capital 
flows from regions with high capital density to regions with low capital density. 
This assumption is incomplete since capital also flows from regions with 
low density of labor to regions with high density of labor since the marginal 
product of capital is higher in those regions.

Therefore, the aim of this article is to analyze the impact of including a labor 
diffusion term in the capital equation upon the steady state stability of the 
spatial Solow model. The article is structured as follows: in Section 2 a brief 
overview of the pertinent literature is provided. In Section 3, we derive and 
introduce the spatial Solow model. Section 4 summarizes the basic stability 
results, which are then discussed in Section 5. Conclusions are drawn and 
prospects for further research are presented in this section as well.

2 Literature Review

The pertinent literature on spatial growth models is fairly ample. The very 
beginnings of spatial-temporal modeling date back to Isard and Liossatos 
(1975) and Isard (1999). In those articles, the authors advocate for the use of 
modeling techniques used in natural sciences, namely physics and chemistry, 
in regional economic modeling. Since the variables of such models depend 
upon both time and space, the governing equations are no longer ordinary 
differential equations, which are encountered frequently in economic models, 
but rather partial differential equations3, commonly used in natural sciences.

Camacho and Zou (2004) employ these techniques to construct a spatial 
version of the Solow model. They assume that labor grows exponentially and 
that capital moves to regions with high marginal productivity. Their results 
are later utilized in Boucekkine, Camacho and Zou (2009), who provide a 
spatial version of the Ramsey model originally proposed by Ramsey (1928). 
However, they exclude the effects of capital and labor interplay.

Juchem Neto and Claeyssen (2014) build upon the spatial Solow model and 
derive evolution equations for capital and labor making use of the concept 

3 For a detailed treatment, see Evans (2010).	
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of diffusion. They assume that both the density of capital and labor have an 
effect on the flow of capital, but only the density of capital impacts the flow 
of capital. Later they include transport cost in the model (see Juchem Neto, 
Claeyssen & da Silva Porto Junior, 2014), but the diffusion of capital still 
depends upon the density of capital only. We strive to bridge this gap in the 
literature by assuming that the density of labor also impacts the diffusion of 
capital.

3 The Model

We build upon the model proposed by Camacho and Zou (2004), later modified 
by Juchem Neto and Claeyssen (2014). Let us assume a continuum of local 
economies denoted by Ω. Since we confine the analysis to a 1-dimensional 
case, we have that Ω = ℝ or Ω = (0,l),l>0. The boundary of Ω is designated by 
∂Ω. Let us also assume that Ω consists of regions denoted by R. The space of 
regions is depicted in Fig. 1.

Fig. 1: The Space of Regions

 

Source: author’s own calculations

In accordance with the Solow model, we assume that the product Y(t,x) (which 
is now a function of both time t and space x) is produced through the Cobb-
Douglas production function employing capital K(t,x) and labor L(t,x). The 
temporal change of capital in a region R is given by

(1)

where the last term in the right-hand-side integrand denotes the net rate of 
capital outflow. For the sake of simplicity, we will drop the argument notation 
next to the functions and we will denote sAKα(t,x)L1-α(t,x) - δK(t,x) as h. 
Economically speaking, Equation (1) expresses that the overall change of 
capital in a region R is equal to the overall investment (which is assumed to 
increase the capital stock) minus the amount of depreciated capital plus the net 
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rate of capital outflow. Imposing all the necessary mathematical restrictions 
regarding differentiability upon the functions, we can write

(2)

Since this equality needs to hold for every region R, it follows from the Hahn-
Banach Theorem (see, for instance Rudin, 1987) that the following equality 
needs to hold

(3)

Unlike Juchem Neto and Claeyssen (2014), we assume the following condition 
for the flux of capital

(4)

where dK, cK > 0 are diffusion coefficients. The first term signifies that capital 
flows from regions of high density of capital to regions with low density. The 
other term expresses that capital flows to regions with high density of labor. 
This effect is not taken into consideration in Juchem Neto and Claeyssen 
(2014), which diminishes the overall realness of the model. Plugging Equation 
(4) into Equation (3), we obtain the first second-order non-linear partial 
differential equation (henceforth PDE) of the model

(5)

This equation describes the evolution of capital in the model. Just like Equation 
(1), we have an equation which describes the temporal change of labor in a 
region R

(6)

This equation expresses that the overall change of labor in a region R is equal 
to the growth rate of labor (here assumed to be logistic, thus g = aL - bL2) and 
the net outflow of labor. The flux of labor is given by
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(7)

which is symmetric to the flux of capital. Once again, labor is assumed to 
move from regions with high density of labor to regions with low density of 
labor and from regions of low density of capital to regions of high density 
of capital. Following the same arguments as before, we derive the second 
second-order non-linear PDE of the model describing the evolution of labor

(8)

Putting the equations together, the model is described by the following 
reaction-convection-diffusion system of PDEs

(9)

The first two equations of the model are the equations derived above. The 
last two equalities denote the initial and the Neumann boundary conditions, 
respectively. The initial conditions specify the initial endowment of capital and 
labor (or the initial densities thereof) at t =0. The boundary condition means 
that the economy is closed. Therefore, there is no flow of capital and labor 
between the economy and the rest of the world. This is assumed to abstract 
from the effects of capital and labor diffusion from abroad. 

If Ω = ℝ, the boundary conditions become 

It can be proven in the same way as in Juchem Neto and Claeyssen (2014) that 
given non-negative initial conditions, the solution stays non-negative. Since 
the system is non-linear, it is very unlikely that a closed-form solution thereof 
can be obtained. Therefore, one has to resort to qualitative and/or numerical 
analysis of the system.
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4 Linear Stability Analysis

In this section, we analyze the spatio-temporal4 steady-state stability of 
System (9). To this end, it is important to calculate the spatio-temporal steady 
state of the system. Setting all of the derivatives equal to zero and solving the 
corresponding algebraic system of equations, we obtain the non-trivial steady 
state in the form5 

(10)

This steady state coincides with the one analyzed in Juchem Neto and Claeyssen 
(2014). Mathematically, this steady state describes a spatially homogeneous 
density of labor and capital which does not change in time. Before linearizing 
the system, it is convenient to normalize the steady-state so that it be centered 
at (1,1). For this purpose, we make use of the same substitutions as in Juchem 
Neto and Claeyssen (2014), that is

(11)

Thus, System (9) becomes (keeping Ω the same)

(12)

where 

4 One could also analyze the stability of the stationary solution, just like in Camacho, and Zou (2004). 
This would be obtained by setting all time derivatives equal to zero. A non-linear system of ordinary 
differential equations (henceforth ODE) would be obtained.	
5 It ought to be noted here that there exists a non-trivial steady state of labor due to the logistic law used 
in the derivation of the model.	



EKONOMICKÉ ROZHĽADY – ECONOMIC REVIEW, 2024, 53(1), 51 ─ 64
 https://doi.org/10.53465/ER.2644-7185.2024.1.51-6458

For the sake of clarity, we will drop the asterisks from now on. It is evident 
that after this substitution, the non-trivial steady state is centered at (1,1). We 
are now ready to linearize this system around the steady state making use of 
Taylor's theorem (see, for instance, Rudin, 1976). In the matrix notation, the 
linearized system becomes (bold denotes vectors and matrices)

(13)

where 

is the Jacobian matrix of (h*,g* ) evaluated at the steady state. The obtained 
linear matrix PDE can be solved employing Fourier analysis. If Ω = ℝ, the 
Fourier transform can be applied to yield the solution. In case of a finite 
interval6, the solution can be expressed in terms of its Fourier series.7 

4. 1 Ω = ℝ 

First, we apply the Fourier transform to System (13)8 

(14)

where A = J + ω2 D,ω Є ℝ. We have thus reduced the PDE to an ODE, which 
can be readily solved. In terms of the matrix exponential9, the solution is

(15)

6 In this case, the solution is periodically extended to the whole real line making use of the boundary 
conditions.	
7 For the applications of Fourier analysis in differential equations, see Pinkus and Zafrany (1997).	
8 Making use of its linearity as well as the fact that  
9	
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The stability of the steady state is given by real parts of the eigenvalues λ 
of A. If the real parts are negative, then the steady state is linearly stable. If 
at least one real part is positive, the steady state is linearly unstable10. The 
characteristic equation of A is of the form

(16)

where 

a1 = (β(1 - α) + 1 + ω2 (1 + d)),

 a2 = ω4 (d - ec) + ω2 (1 + β(1 - α)(d - e)) + β(1 - α).   The solution is given by

 

(17)

Propositions 1 and 2 summarize the stability results (we assume that c ≠ 0 
since the case when it is zero is analyzed in Juchem Neto and Claeyssen, 
2014). Before stating the propositions, let us prove Lemma 1.

Lemma 1. The real parts of both of the eigenvalues given by Equation (16) are 
negative if and only if a2 > 0. If a2 < 0, then one eigenvalue is a positive real 
number and the other one is a negative real number. If a2 = 0, one eigenvalue 
is zero and the other one is a negative real number.

Proof. Given the assumptions upon the model coefficients, it always holds 
that a1 > 0. From Vieta's formulas we have that λ1 + λ2 = -a1 < 0 and λ1 λ2 = a2. 
If a2 

 ≤ 0, it immediately follows that exactly one of the eigenvalues has a non-
negative real part. If a2 > 0, it follows from the first Vieta's formula that both 
real parts must be negative. The other parts of the lemma follow from Vieta's 
formulas as well. Hence, the proof is complete. 

Proposition 1. The steady state is linearly stable if either one of these 
conditions is fulfilled:

               i.    e=0

              ii.   d≥max{ec,e}

10 See, for instance, Wiggins (1990).	
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Proof. If e = 0, then it follows directly that a2 > 0. From Lemma 1 we know 
that in this case, both eigenvalues have a negative real part, which concludes 
the proof. If d ≥ max{ec,e}, then a2 > 0 since all of the coefficients as well as ω2 
and ω4 are non-negative and β (1 - α) > 0, which concludes the proof.

Notice that if c = 0, e ≠ 0, the steady state can still be unstable as shown in 
Juchem Neto and Claeyssen (2014). This comes down to the asymmetry in the 
Jacobian matrix J.

Proposition 2. The steady state is linearly unstable if either one of these 
conditions is fulfilled:

	

Proof.  If d<ec, then                a2 = -∞, so a2 < 0 for large enough |ω|. 

Hence, one eigenvalue has a positive real part as proven in Lemma 1. In the 
second case, the minimum of a2 is negative, therefore, a2 < 0 for some ω, 
which again concludes the proof.

4. 2 Ω=(0,l)
 
In this case, the solutions to System (13) are of the form u = eλt v, which leads 
to the following Sturm-Liouville boundary-value problem

(18) 

The solution will therefore be the following Fourier series



EKONOMICKÉ ROZHĽADY – ECONOMIC REVIEW, 2024, 53(1), 51 ─ 64
https://doi.org/10.53465/ER.2644-7185.2024.1.51-64 61

(19)

If the conditions of the second part of Proposition 2 are satisfied, then the 
steady state is linearly unstable for a sufficiently large l.

5 Concluding Remarks

The aim of this article is to analyze the impact of including a labor diffusion 
term (coefficient cK in Equation (4)) in the capital equation upon the steady 
state stability of the spatial Solow model. As is shown in the previous section, 
this coefficient has a profound impact upon the steady state stability. Namely, 
if it is too high (and at the same time the diffusion coefficient cL is non-zero), 
the steady state becomes unstable. Economically, this means that if capital 
reacts too sensitively to the density of labor, it is harder for the economy to 
reach the homogeneous spatio-temporal steady state. This is due to the fact 
that there are two driving forces working in the opposite direction. On the 
one hand, capital moves to regions with lower relative density of capital and 
higher relative density of labor. On the other hand, an analogous proposition 
holds true for labor as well. Therefore, higher density of labor attracts more 
capital, but in turns causes labor to flow out. However, the inflowing capital 
attracts more labor and repels capital. Hence, it should not come as a surprise 
that with the right set of parameters, the economy could oscillate around the 
steady state or even evolve in a more chaotic or divergent manner. As shown in 
our analysis, it all comes down to the relative values of diffusion parameters.

An intriguing observation is that if the diffusion coefficient which attracts 
labor to regions with higher density of capital cL is zero, the model is stable 
no matter the value of ck (as long as it is non-negative, as assumed in our 
analysis), but the same is not true if cK = 0. This asymmetry of the model is 
caused by the asymmetry of the Jacobian matrix. In the presented model, the 
growth rate of labor depends solely upon the level of labor11, while the rate of 
change of capital is a function of both capital and labor.

11 The model would become more realistic if we assumed that the growth rate of labor also depends 
upon the product, and thus both capital and labor.	
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If labor does not react to the density of capital, its governing equation 
postulates that its diffusion is only affected by its own density, while capital 
still moves to regions with high density of labor. However, the marginal 
productivity of both capital and labor drop with an increasing amount of these 
factors of production. This only drives capital out of such a region, but not 
labor since its diffusion is only affected by the density of labor. This means 
that over time, the distribution of labor becomes more and more uniform. 
Once it is perfectly uniform, the marginal productivity of capital will depend 
solely upon the distribution of capital. Therefore, the economy will gradually 
converge towards its steady state.

If, however, it is capital which does not react to the density of labor, the 
situation is different. Higher density of capital moves capital out but attracts 
labor. While higher density of labor does not attract capital from neighboring 
regions, it does increase the product in the home region, which in turn increases 
the production of capital. So while the flow of capital affects labor only through 
the diffusion mechanism, the flow of labor affects the capital not only through 
the diffusion mechanism, but through the production function as well.

There are quite a few possible extensions of the model. Firstly, although this 
version of the model is spatial, it is not necessarily regional. The same governing 
equations might as well describe the evolution of individual economies in the 
world economy. The major difference between an economy and a region lies 
in the openness towards other regions and/or economies. While economies are 
usually more closed in the sense that capital and labor flows are not as fluent 
across its borders, regions are more open, thereby making the capital and 
labor flow more fluent. This could be taken into considerations of the diffusion 
coefficients were functions of space. That way, it would be possible to model 
regional economies within a national economy and national economies in the 
world economy in one model. The diffusion coefficients would simply attain 
lower values near the boundaries of national economies than within national 
economies. Secondly, the model as presented in this paper assumes that the 
flow of capital and labor depends solely upon their densities. However, the 
diffusion process is smoother between regions with highly developed (not 
only physical) infrastructure. Therefore, the model could be extended by 
including the infrastructure. In such a model it might be possible to observe 
other conflicting phenomena - regions with highly developed infrastructure 
may attract capital and labor from other regions, but they also make it easier 
for their own capital and labor to move to other regions. Thirdly, one might 
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study the effects of various regional policies upon the model. Having said 
that, any of these changes would make the model considerably more complex, 
thereby rendering its further analysis more difficult.
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