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FUNCTIONAL LINEAR REGRESSION: A CASE STUDY 
FROM THE FOOD INDUSTRY1 
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Abstract: A problem of analyzing functions in statistics is a very recent 
phenomenon that has been extensively investigated. The functionality 
in observed data, that is, when data are generated through a process 
naturally described as functional, occurs in many areas of sciences. 
For example, time series in financial engineering, imagining records 
in medicine, or spectrometric wavelengths in chemometrics can 
be considered as a discrete approximation of a continuous set of 
mathematical objects. In the initial step, observed real-valued data are 
transposed into functional data by smoothing or interpolation technique. 
These functional objects can then be directly used in the framework of 
statistical regressions. The aim of this paper is to show an estimation 
of the functional linear regression, where the observed covariate is 
functional, and its corresponding response is scalar. In the empirical 
study, we utilize spectrometric data with an objective to predict the fat 
content in a meat sample given the spectrum of absorbances, which are 
recorded through the infrared analyzer, by using the estimated functional 
linear regression. The functional regression coefficient is estimated 
through the basis spline expansion, for which we evaluate a different 
number of basis splines and propose the best predictor estimator.
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1 Introduction

Many natural phenomena allow to record real-valued data over a very fine grid 
that results in the collection of very large data sets of observations. The real-
valued data samples in such high-dimensional datasets can be transformed 
into a collection of mathematical objects that are observable on an infinite 
continuum.

The first step in the functional data analysis is to choose a data representation 
through a smoothing or an interpolation process. Assuming that a matrix Xij, 
where each sample i, i = 1, …, n, is observed for variables j, j = 1, ..., p, as a set 
of real-valued vectors, the first task is to convert these vectors into functions 
χi(t) for each i that are computable for any argument value t. If discrete values 
are assumed to be errorless, then it is an interpolation process, but if they 
have some observational error that needs removing, then the conversion from 
discrete data to functions may involve smoothing. The common technique 
to impose functions χi(t) on observed data is a spline basis approximation. A 
comprehensive study of data smoothing using splines is provided in De Boor 
(2001).

Once data is transposed into a functional form, we can proceed to explore the 
variability in functional objects. The pioneering research using functional data 
in the framework of the linear regression is carried out by Cardot, Ferraty and 
Sarda (1999), where the authors propose an adjusted computational strategy 
for the least squares minimization.

In the paper Knížat (2022), the author shows an application of the functional 
analysis of variance (ANOVA). In the general form of functional regression, 
the response variable is of a functional form and the matrix of covariates is 
coded zero and one that corresponds to each treatment category of observed 
curves. In its empirical analysis, the spectrometric data set is adapted to an 
experimental design that is proposed by the author.

In the paper Ferraty and Vieu (2002), the authors propose a functional non-
parametric regression to predict the fat content in meat samples using the 
spectrometric data set. They conclude that the proposed model provides 
satisfactory prediction results.

The state-of-the-art literature on functional data analysis, which also include 
the practical application in the R software, is provided in Ramsay and 
Silverman (2005) and Ramsay, Hooker and Graves (2009). 
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The main objective of this paper is to show an estimation of the functional linear 
regression, where the observed covariate is functional, and its corresponding 
response is scalar. In the empirical study, we utilize spectrometric data with 
an objective to predict the fat content in a meat sample given the spectrum of 
absorbances, which are recorded through the infrared analyzer, by using the 
estimated functional linear regression. The functional regression coefficient is 
estimated through the basis spline expansion, for which we evaluate a different 
number of basis splines and propose the best predictor estimator based on the 
mean squared error.

The paper is organized as follows. Section 2 outlines a theoretical framework 
for fitting basis splines into observed data, to transform real data into 
functional data, and for ordinary least squares when using functions in the 
estimator. Section 3 shows the application of functional linear regression on 
the spectrometric data set. It evaluates its prediction accuracy when using a 
different number of basis splines in the expansion of the functional regression 
parameter. Conclusion summarizes the results and outlines further research 
possibilities.

2 Theoretical Framework

The notion of the classic form of the linear model can be extended to the 
functional context. The linear model can be functional in the following way: 
either response or covariate, or both, can be of the functional form.
This chapter shows the theoretical framework for estimating a functional linear 
regression where the response is a real-valued vector given the functional 
covariate. The computational methodology defines basis functions within 
the least squares criteria, with a way of thinking very similar to the classic 
regression approach. The main difference is that the regression coefficients now 
become the regression coefficient function, β(t), observable on a continuous 
domain t.

2. 1 B-spline expansion

Let us assume that we observe a matrix of real numbers Xij as specified in 
Section 1. It follows that by assuming that an observed data set comes from a 
functional process, the need dictates transforming the observed real data into 
functional objects. A function is fitted into a matrix of real numbers Xij across 
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each sample observation i, and, therefore, a p-dimensional space is mapped 
into an infinite, or functional, space. A notation for such a functional covariate 
is χi(t), where i = 1, …, n refers to the number of sample curves.

The basis spline, also called B-spline, expansion can be used to individually 
construct a continuous and sufficiently differentiable functions χi(t): R → R. 
The functions χ(t) = χi(t) can be expressed in terms of B-spline expansion as 
De Boor (2001):

 (1)

The spline curves, Bk (t,τl ), are piecewise polynomials of order m that are 
automatically tied together at the breakpoint, or knot, sequence τl, l = 1, …, 
L – 1, where k = 1, …, K refers to the number of basis splines. The Ck is a 
matrix of parameters to be estimated for each observed sample curve i, with a 
number of parameters K.

The code for working with B-splines is available in a wide range of programming 
languages, including R, S-PLUS and MATLAB®. The interested reader 
should consult De Boor (2001) for more theoretical details related to basis 
spline expansions.

The application of the B-spline interpolation to real data can be done through 
the familiar technique of fitting statistical models to data by minimizing the 
sum of squared errors, or least squares estimation, which leads to an estimation 
of parameters Ck. The number of basis splines is defined by the user that drives 
a degree of smoothing. In our case, we use a sufficiently large number of basis 
splines such that the B-spline provides an interpolation of the original data 
that guarantees no loss of information.

It follows that after defining a least square criterion, setting it equal to zero, 
and solving its derivative, the estimated Ĉk are defined as:

 (2)

where the superscript ' denotes a transpose. The functional covariate χ(t) in 
Eq. (1) can be re-expressed as:
  (3)

The functions χ(t) are observable on a continuous domain t, and can be 
discretized at any values on t.
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2.2 Functional linear regression

Further statistical analysis normally comprises of identifying a structure and 
covariability in the response variable, y = yi, given the functional covariate, 
χ(t) = χi(t). They can be placed within the following functional form:

(4)

where ε is a real-valued vector of residuals i = 1, …, n and the unknown 
regression function f(χ(t)) can be of parametric or nonparametric form.

A functional parametric model can be described by the estimated functional 
parameter(s) that determine the model structure. In the functional nonparametric 
model, the estimated structure of the model is determined by the specified 
semi-metric measure that is based on the kernel density function.

In the further analysis, we consider the functional parametric regression that 
takes the following form Ramsay and Silverman (2005):

(5)

Eq. (5) is a functional extension of the linear regression where the usual 
summation of Xβ is replaced by the integration over a continuous index t, 
where β(t) is a regression coefficient function observable on a continuous 
domain t. The real-valued vector ε are random errors, which are assumed to 
be independent and identically distributed ε~N(0,σ2), and β0 is a point-wise 
intercept of the regression function.

To express Eq. (5) in terms of basis splines, the regression coefficient function 
β(t) can be decomposed as:

 (6)

where θk (t) is a vector of basis splines of length Kβ, with a corresponding 
vector of coefficients bk. The functional covariate χ(t) is expressed as in Eq. 
(1). Noting that for the simplification purpose, we omit the notation for knots 
τl.
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It follows that Eq. (5) can be rewritten as Ramsay and Silverman (2005):

  (7)

In Eq. (7), a number of basis splines θk (t) in the expansion of the functional 
regression parameter β(t) is defined by the user, with the corresponding 
unknown parameters b_k estimated using the functional least squares method.

Now, we define a matrix JBθ of length K×Kβ, 

JBθ=∫Bk (t)θk (t)'dt. To further simplify the notation, the vector u of length (Kβ 
+ 1) and the matrix Z of length N×(Kβ+1) are defined as:

 (8)

where 1 denotes a vector of ones with length Kβ used in the estimation of β0. 
Eq. (7) can now be re-expressed as:

(9)

It follows that the least squares criterion (LSC) can be written as:

 (10)

The least squares estimate of the augmented parameters vector u, which 
minimizes Eq. (10), is the solution of the equation:

(11)

A detailed derivation of Eqs. (7) up to (11) is provided in Ramsay and 
Silverman (2005).

3 Results

In the empirical analysis, we utilize data that originate from the investigation 
of quality control in the food industry, which are referred to as a spectrometric 
data set. Detailed description of the spectrometric (tecator) data set can be 
found at http://lib.stat.cmu.edu/datasets/tecator.
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The spectrometric data set was also used in the paper Knížat (2022), where 
the author shows the application of the functional analysis of variance. The 
transformation of observed data, which are measured as 100 channel spectra 
of absorbances by the infrared analyzer for each meat sample, into functional 
objects is the same as in this paper, i.e., we use 30 basis splines of order 3 to 
generate 215 sample curves χi(t) as in Eq. (1). The fat content for each meat 
sample is a real-valued response yi. 

Figure 1 shows the estimated functional regression parameter   (t), including 
the point-wise intercept 0, that is measured on the scale from 0 to 100 as the 
original observed absorbances on 100 channel spectra. For the expansion of 

(t) as in Eq. (6), we use a different number of basis splines to evaluate its 
impact.

Fig. 1: Estimated (t) coefficient functions, with 5, 6, 7, 8, 9 and 10 basis 
splines used in its expansion

 

Source: author’s calculations

Figure 1 shows that both shape and magnitude of the estimated (t) coefficient 
function change by varying the number of basis splines in its expansion. 
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However, it is not straightforward to interpret (t). We can deduce that it 
places more emphasis, shown as departures from zero axis, on approximately 
10th, 40th, and 85th channel spectra, which might indicate that these absorbances 
play a more pivotal role in the estimation of the fat content in meat samples. 
Noting that the emphasis changes when using a different number of basis 
splines. Moreover, the estimated intercept 0 increases by decreasing the 
number of basis splines.

Figure 2 shows the estimated versus observed fat content values, including the 
mean squared error3 for each (t) expansion. 

Fig. 2: The estimated versus observed fat content value, with 5, 6, 7, 8, 9 and 
10 basis splines used in the (t) expansion

 

Source: author’s calculations

Figure 2 shows that the best prediction fit is obtained when using 9 basis 
splines in the (t) expansion, which is confirmed by its corresponding mean 
squared error.

3 The mean squared error is calculated as a mean of squared differences between observed and predic-
ted responses divided by the number of observations. 
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4 Conclusions

The main objective of this paper is the application of the theoretical framework 
of functional linear regression. In the first part, we present a computational 
method of the least squares criterion that is used when the covariate is 
functional. In the empirical analysis, we use a spectrometric data set to evaluate 
the prediction ability of the functional linear model. We show that the number 
of basis splines in the expansion of the functional regression coefficient plays 
a pivotal role in the fitted model’s prediction accuracy. The best prediction 
for the fat content in meat samples is achieved when nine basis splines are 
used in the (t) expansion. Moreover, it is not straightforward to interpret the 
estimated functional regression coefficient as in its classical counterpart.

Further research is required to evaluate diagnostics of the fitted model and 
its assumptions. Moreover, a nonparametric functional regression could be 
used for the response prediction and its results compared to its parametric 
counterpart. A comparison can also be made with classic multivariate statistical 
regression models, similar to Ahn (2022). 
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